Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
Where am I supposed to go? Where was I supposed to know?Violet Indiana

design: exciting



Visualization Tour, Melbourne, October 9–20, 2014


art + science

Bloomberg Businessweek Design Conference — San Francisco, 2013

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Design loves science and science loves design, but doesn't always know it. (Bloomberg Businessweek)

science design

Together with Alberto Cairo, I presented at the Bloomberg Businessweek Design Conference (highlights) on the topic of design and communication in the sciences.

Alberto, as the journalist, motivated why communication should include access to detail through an engaging narrative. He made the distinction between the specialist (heavy on detail) and the communicator (focus on narrative) and emphasized that the distinction is artificial, though often played out (watch video).

I, as the scientist, underscored the importance of clear communication between scientists. As the specialists, they are often very poor communicators. Pick up any science journal and you'll quickly discover that scientists either aren't good at telling stories or are discouraged to do so by the medium. The consequence is the same: papers read like a wall of text. TL;DR anyone? The quality of visual communication in general ranges from muddled to abysmal (watch video).

We need more leaders in the field, such as Nature Publishing Group, to reward and emphasize good visual communication (e.g. Nature Cancer Review 2013 Figure Calendar).

Our presentations concluded with a 15 minute moderated discussion with Sam Grobart, senior Businesssweek writer. Everyone got a little cheeky. Good fun.

presentation video

Watch: my presentation, conversation with Alberto Cairo, moderated by Sam Grobart. (Bloomberg TV), Albert Cairo's presentation.

presentation slides

This was a lightning 7 minute talk. I did more planning about what to say than I usually do, given that there was virtually no opportunity for any kind of backtracking, and include a running narrative below each slide.

Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
Martin Krzywinski - Bloomberg Businessweek Design Conference 2013
1/32

download presentation

My slides are available as PDF, keynote (zipped) or Quicktime. The format is 16:9 HD.

Bloomberg Businessweek Design Issue

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The reality of redesign is disruptive. How can we pursue new ideas and opportunities without leaving consumers confused or angry? Businessweek puts that question to some of the world's most accomplished designers. (Bloomberg Businessweek Design Issue)

On 28 Jan 2013, Bloomberg Businessweek Design Issue will capture the ideas from the conference and the personalities that generated them.

During the conference, each talk was captured in a series of sketches by Tom Wujec: my talk sketch and moderated discussion sketch.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Date completed: ongoing — an accurate assessment of the state of the visual communication field in science. (read article)

news + thoughts

Replication—Quality over Quantity

Tue 02-09-2014

It's fitting that the column published just before Labor day weekend is all about how to best allocate labor.

Replication is used to decrease the impact of variability from parts of the experiment that contribute noise. For example, we might measure data from more than one mouse to attempt to generalize over all mice.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Replication. (read)

It's important to distinguish technical replicates, which attempt to capture the noise in our measuring apparatus, from biological replicates, which capture biological variation. The former give us no information about biological variation and cannot be used to directly make biological inferences. To do so is to commit pseudoreplication. Technical replicates are useful to reduce the noise so that we have a better chance to detect a biologically meaningful signal.

Blainey, P., Krzywinski, M. & Altman, N. (2014) Points of Significance: Replication Nature Methods 11:879-880.

Background reading

Krzywinski, M. & Altman, N. (2014) Points of Significance: Analysis of variance (ANOVA) and blocking Nature Methods 11:699-700.

Krzywinski, M. & Altman, N. (2014) Points of Significance: Designing Comparative Experiments Nature Methods 11:597-598.

...more about the Points of Significance column

Monkeys on a Hilbert Curve—Scientific American Graphic

Tue 19-08-2014

I was commissioned by Scientific American to create an information graphic that showed how our genomes are more similar to those of the chimp and bonobo than to the gorilla.

I had about 5 x 5 inches of print space to work with. For 4 genomes? No problem. Bring out the Hilbert curve!

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Our genomes are much more similar to the chimp and bonobo than to the gorilla. And, we're practically still Denisovans. (details)

To accompany the piece, I will be posting to the Scientific American blog about the process of creating the figure. And to emphasize that the genome is not a blueprint!

As part of this project, I created some Hilbert curve art pieces. And while exploring, found thousands of Hilbertonians!

Happy Pi Approximation Day— π, roughly speaking 10,000 times

Wed 13-08-2014

Celebrate Pi Approximation Day (July 22nd) with the art of arm waving. This year I take the first 10,000 most accurate approximations (m/n, m=1..10,000) and look at their accuracy.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Accuracy of the first 10,000 m/n approximations of Pi. (details)

I turned to the spiral again after applying it to stack stacked ring plots of frequency distributions in Pi for the 2014 Pi Day.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Frequency distribution of digits of Pi in groups of 4 up to digit 4,988. (details)

Analysis of Variance (ANOVA) and Blocking—Accounting for Variability in Multi-factor Experiments

Mon 07-07-2014

Our 10th Points of Significance column! Continuing with our previous discussion about comparative experiments, we introduce ANOVA and blocking. Although this column appears to introduce two new concepts (ANOVA and blocking), you've seen both before, though under a different guise.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Analysis of variance (ANOVA) and blocking. (read)

If you know the t-test you've already applied analysis of variance (ANOVA), though you probably didn't realize it. In ANOVA we ask whether the variation within our samples is compatible with the variation between our samples (sample means). If the samples don't all have the same mean then we expect the latter to be larger. The ANOVA test statistic (F) assigns significance to the ratio of these two quantities. When we only have two-samples and apply the t-test, t2 = F.

ANOVA naturally incorporates and partitions sources of variation—the effects of variables on the system are determined based on the amount of variation they contribute to the total variation in the data. If this contribution is large, we say that the variation can be "explained" by the variable and infer an effect.

We discuss how data collection can be organized using a randomized complete block design to account for sources of uncertainty in the experiment. This process is called blocking because we are blocking the variation from a known source of uncertainty from interfering with our measurements. You've already seen blocking in the paired t-test example, in which the subject (or experimental unit) was the block.

We've worked hard to bring you 20 pages of statistics primers (though it feels more like 200!). The column is taking a month off in August, as we shrink our error bars.

Krzywinski, M. & Altman, N. (2014) Points of Significance: Analysis of Variance (ANOVA) and Blocking Nature Methods 11:699-700.

Background reading

Krzywinski, M. & Altman, N. (2014) Points of Significance: Designing Comparative Experiments Nature Methods 11:597-598.

Krzywinski, M. & Altman, N. (2014) Points of Significance: Comparing Samples — Part I — t-tests Nature Methods 11:215-216.

Krzywinski, M. & Altman, N. (2013) Points of Significance: Significance, P values and t-tests Nature Methods 10:1041-1042.

...more about the Points of Significance column

Designing Experiments—Coping with Biological and Experimental Variation

Thu 29-05-2014

This month, Points of Significance begins a series of articles about experimental design. We start by returning to the two-sample and paired t-tests for a discussion of biological and experimental variability.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Designing Comparative Experiments. (read)

We introduce the concept of blocking using the paired t-test as an example and show how biological and experimental variability can be related using the correlation coefficient, ρ, and how its value imapacts the relative performance of the paired and two-sample t-tests.

We also emphasize that when reporting data analyzed with the paired t-test, differences in sample means (and their associated 95% CI error bars) should be shown—not the original samples—because the correlation in the samples (and its benefits) cannot be gleaned directly from the sample data.

Krzywinski, M. & Altman, N. (2014) Points of Significance: Designing Comparative Experiments Nature Methods 11:597-598.

Background reading

Krzywinski, M. & Altman, N. (2014) Points of Significance: Comparing Samples — Part I — t-tests Nature Methods 11:215-216.

Krzywinski, M. & Altman, N. (2013) Points of Significance: Significance, P values and t-tests Nature Methods 10:1041-1042.