Let me tell you about something.

Distractions and amusements, with a sandwich and coffee.

Mad about you, orchestrally.
•
• feel the vibe, feel the terror, feel the pain

Together with Alberto Cairo, I presented at the Bloomberg Businessweek Design Conference (highlights) on the topic of design and communication in the sciences.

Alberto, as the journalist, motivated why communication should include access to detail through an engaging narrative. He made the distinction between the specialist (heavy on detail) and the communicator (focus on narrative) and emphasized that the distinction is artificial, though often played out (watch video).

I, as the scientist, underscored the importance of clear communication *between* scientists. As the specialists, they are often very poor communicators. Pick up any science journal and you'll quickly discover that scientists either aren't good at telling stories or are discouraged to do so by the medium. The consequence is the same: papers read like a wall of text. TL;DR anyone? The quality of visual communication in general ranges from muddled to abysmal (watch video).

We need more leaders in the field, such as Nature Publishing Group, to reward and emphasize good visual communication (e.g. Nature Cancer Review 2013 Figure Calendar).

Our presentations concluded with a 15 minute moderated discussion with Sam Grobart, senior Businesssweek writer. Everyone got a little cheeky. Good fun.

Watch: my presentation, conversation with Alberto Cairo, moderated by Sam Grobart. (Bloomberg TV), Albert Cairo's presentation.

This was a lightning 7 minute talk. I did more planning about what to say than I usually do, given that there was virtually no opportunity for any kind of backtracking, and include a running narrative below each slide.

My slides are available as PDF, keynote (zipped) or Quicktime. The format is 16:9 HD.

On 28 Jan 2013, Bloomberg Businessweek Design Issue will capture the ideas from the conference and the personalities that generated them.

During the conference, each talk was captured in a series of sketches by Tom Wujec: my talk sketch and moderated discussion sketch.

Celebrate Pi Approximation Day (July 22nd) with the art arm waving. This year I take the first 10,000 most accurate approximations (m/n, m=1..10,000) and look at their accuracy.

I turned to the spiral again after applying it to stack stacked ring plots of frequency distributions in Pi for the 2014 Pi Day.

Our 10th Points of Significance column! Continuing with our previous discussion about comparative experiments, we introduce ANOVA and blocking. Although this column appears to introduce two new concepts (ANOVA and blocking), you've seen both before, though under a different guise.

If you know the *t*-test you've already applied analysis of variance (ANOVA), though you probably didn't realize it. In ANOVA we ask whether the variation within our samples is compatible with the variation between our samples (sample means). If the samples don't all have the same mean then we expect the latter to be larger. The ANOVA test statistic (*F*) assigns significance to the ratio of these two quantities. When we only have two-samples and apply the *t*-test, *t*^{2} = *F*.

ANOVA naturally incorporates and partitions sources of variation—the effects of variables on the system are determined based on the amount of variation they contribute to the total variation in the data. If this contribution is large, we say that the variation can be "explained" by the variable and infer an effect.

We discuss how data collection can be organized using a randomized complete block design to account for sources of uncertainty in the experiment. This process is called blocking because we are blocking the variation from a known source of uncertainty from interfering with our measurements. You've already seen blocking in the paired *t*-test example, in which the subject (or experimental unit) was the block.

We've worked hard to bring you 20 pages of statistics primers (though it feels more like 200!). The column is taking a month off in August, as we shrink our error bars.

Krzywinski, M. & Altman, N. (2014) Points of Significance: Analysis of Variance (ANOVA) and Blocking *Nature Methods* **11**:699-700.

Krzywinski, M. & Altman, N. (2014) Points of Significance: Designing Comparative Experiments *Nature Methods* **11**:597-598.

Krzywinski, M. & Altman, N. (2014) Points of Significance: Comparing Samples — Part I — *t*-tests *Nature Methods* **11**:215-216.

Krzywinski, M. & Altman, N. (2013) Points of Significance: Significance, *P* values and *t*-tests *Nature Methods* **10**:1041-1042.

This month, Points of Significance begins a series of articles about experimental design. We start by returning to the two-sample and paired *t*-tests for a discussion of biological and experimental variability.

We introduce the concept of blocking using the paired *t*-test as an example and show how biological and experimental variability can be related using the correlation coefficient, *ρ*, and how its value imapacts the relative performance of the paired and two-sample *t*-tests.

We also emphasize that when reporting data analyzed with the paired t-test, differences in sample means (and their associated 95% CI error bars) should be shown—not the original samples—because the correlation in the samples (and its benefits) cannot be gleaned directly from the sample data.

Krzywinski, M. & Altman, N. (2014) Points of Significance: Designing Comparative Experiments *Nature Methods* **11**:597-598.

Krzywinski, M. & Altman, N. (2014) Points of Significance: Comparing Samples — Part I — *t*-tests *Nature Methods* **11**:215-216.

Krzywinski, M. & Altman, N. (2013) Points of Significance: Significance, *P* values and *t*-tests *Nature Methods* **10**:1041-1042.

Our May Points of Significance Nature Methods column jumps straight into dealing with skewed data with Non Parametric Tests.

We introduce non-parametric tests and simulate data scenarios to compare their performance to the *t*-test. You might be surprised—the *t*-test is extraordinarily robust to distribution shape, as we've discussed before. When data is highly skewed, non-parametric tests perform better and with higher power. However, if sample sizes are small they are limited to a small number of possible *P* values, of which none may be less than 0.05!

Krzywinski, M. & Altman, N. (2014) Points of Significance: Non Parametric Testing *Nature Methods* **11**:467-468.

Krzywinski, M. & Altman, N. (2014) Points of Significance: Comparing Samples — Part I — *t*-tests *Nature Methods* **11**:215-216.

Krzywinski, M. & Altman, N. (2013) Points of Significance: Significance, *P* values and *t*-tests *Nature Methods* **10**:1041-1042.

In the April Points of Significance Nature Methods column, we continue our and consider what happens when we run a large number of tests.

Observing statistically rare test outcomes is expected if we run enough tests. These are statistically, not biologically, significant. For example, if we run *N* tests, the smallest *P* value that we have a 50% chance of observing is 1–exp(–ln2/*N*). For *N* = 10^{k} this *P* value is *P*_{k}=10^{–k}ln2 (e.g. for 10^{4}=10,000 tests, *P*_{4}=6.9×10^{–5}).

We discuss common correction schemes such as Bonferroni, Holm, Benjamini & Hochberg and Storey's *q* and show how they impact the false positive rate (FPR), false discovery rate (FDR) and power of a batch of tests.

Krzywinski, M. & Altman, N. (2014) Points of Significance: Comparing Samples — Part II — Multiple Testing *Nature Methods* **11**:215-216.

*t*-tests *Nature Methods* **11**:215-216.

*P* values and *t*-tests *Nature Methods* **10**:1041-1042.