Poetry is just the evidence of life. If your life is burning well, poetry is just the ash
•
• burn something

Together with Alberto Cairo, I presented at the Bloomberg Businessweek Design Conference (highlights) on the topic of design and communication in the sciences.

Alberto, as the journalist, motivated why communication should include access to detail through an engaging narrative. He made the distinction between the specialist (heavy on detail) and the communicator (focus on narrative) and emphasized that the distinction is artificial, though often played out (watch video).

I, as the scientist, underscored the importance of clear communication *between* scientists. As the specialists, they are often very poor communicators. Pick up any science journal and you'll quickly discover that scientists either aren't good at telling stories or are discouraged to do so by the medium. The consequence is the same: papers read like a wall of text. TL;DR anyone? The quality of visual communication in general ranges from muddled to abysmal (watch video).

We need more leaders in the field, such as Nature Publishing Group, to reward and emphasize good visual communication (e.g. Nature Cancer Review 2013 Figure Calendar).

Our presentations concluded with a 15 minute moderated discussion with Sam Grobart, senior Businesssweek writer. Everyone got a little cheeky. Good fun.

Watch: my presentation, conversation with Alberto Cairo, moderated by Sam Grobart. (Bloomberg TV), Albert Cairo's presentation.

This was a lightning 7 minute talk. I did more planning about what to say than I usually do, given that there was virtually no opportunity for any kind of backtracking, and include a running narrative below each slide.

My slides are available as PDF, keynote (zipped) or Quicktime. The format is 16:9 HD.

On 28 Jan 2013, Bloomberg Businessweek Design Issue will capture the ideas from the conference and the personalities that generated them.

During the conference, each talk was captured in a series of sketches by Tom Wujec: my talk sketch and moderated discussion sketch.

Building on last month's column about Bayes' Theorem, we introduce Bayesian inference and contrast it to frequentist inference.

Given a hypothesis and a model, the frequentist calculates the probability of different data generated by the model, *P*(data|model). When this probability to obtain the observed data from the model is small (e.g. `alpha` = 0.05), the frequentist rejects the hypothesis.

In contrast, the Bayesian makes direct probability statements about the model by calculating P(model|data). In other words, given the observed data, the probability that the model is correct. With this approach it is possible to relate the probability of different models to identify one that is most compatible with the data.

The Bayesian approach is actually more intuitive. From the frequentist point of view, the probability used to assess the veracity of a hypothesis, P(data|model), commonly referred to as the *P* value, does not help us determine the probability that the model is correct. In fact, the *P* value is commonly misinterpreted as the probability that the hypothesis is right. This is the so-called "prosecutor's fallacy", which confuses the two conditional probabilities *P*(data|model) for *P*(model|data). It is the latter quantity that is more directly useful and calculated by the Bayesian.

Puga, J.L, Krzywinski, M. & Altman, N. (2015) Points of Significance: Bayes' Theorem *Nature Methods* **12**:277-278.

Puga, J.L, Krzywinski, M. & Altman, N. (2015) Points of Significance: Bayes' Theorem *Nature Methods* **12**:277-278.

In our first column on Bayesian statistics, we introduce conditional probabilities and Bayes' theorem

*P*(B|A) = *P*(A|B) × *P*(B) / *P*(A)

This relationship between conditional probabilities *P*(B|A) and *P*(A|B) is central in Bayesian statistics. We illustrate how Bayes' theorem can be used to quickly calculate useful probabilities that are more difficult to conceptualize within a frequentist framework.

Using Bayes' theorem, we can incorporate our beliefs and prior experience about a system and update it when data are collected.

Puga, J.L, Krzywinski, M. & Altman, N. (2015) Points of Significance: Bayes' Theorem *Nature Methods* **12**:277-278.

Oldford, R.W. & Cherry, W.H. Picturing probability: the poverty of Venn diagrams, the richness of eikosograms. (University of Waterloo, 2006)

Celebrate `pi` Day (March 14th) with splitting its digit endlessly. This year I use a treemap approach to encode the digits in the style of Piet Mondrian.

The art has been featured in Ana Swanson's Wonkblog article at the Washington Post—10 Stunning Images Show The Beauty Hidden in `pi`.

I also have art from 2013 `pi` Day and 2014 `pi` Day.

The split plot design originated in agriculture, where applying some factors on a small scale is more difficult than others. For example, it's harder to cost-effectively irrigate a small piece of land than a large one. These differences are also present in biological experiments. For example, temperature and housing conditions are easier to vary for groups of animals than for individuals.

The split plot design is an expansion on the concept of blocking—all split plot designs include at least one randomized complete block design. The split plot design is also useful for cases where one wants to increase the sensitivity in one factor (sub-plot) more than another (whole plot).

Altman, N. & Krzywinski, M. (2015) Points of Significance: Split Plot Design *Nature Methods* **12**:165-166.

1. Krzywinski, M. & Altman, N. (2014) Points of Significance: Designing Comparative Experiments *Nature Methods* **11**:597-598.

2. Krzywinski, M. & Altman, N. (2014) Points of Significance: Analysis of variance (ANOVA) and blocking *Nature Methods* **11**:699-700.

3. Blainey, P., Krzywinski, M. & Altman, N. (2014) Points of Significance: Replication *Nature Methods* **11**:879-880.

In an audience of 8 men and 8 women, chances are 50% that at least one has some degree of color blindness^{1}. When encoding information or designing content, use colors that is color-blind safe.