Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
Love itself became the object of her love.Jonathan Safran Foercount sadnessesmore quotes

understanding: FTW


In Silico Flurries: Computing a world of snow. Scientific American. 23 December 2017


data visualization + art

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
To view the art you'll need a pair of red-blue 3D glasses.
The data will stand out—and you will too.

BD Genomics stereoscopic art exhibit — AGBT 2017

Art is science in love.
— E.F. Weisslitz

BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Our art exhibit at AGBT 2017 asked new school questions in old school ways.

data in new dimensions

convergence of art, genomics and bioinformatics

In genomics, insights can hinge on a difference of one. One cellular mutation to go from healthy to diseased. One cell migration from tumor to metastasis. Even subtle differences in gene expression between healthy cells shapes their form and function.

In Data in New Dimensions, we’ve created an immersive data art experience celebrating the individuality and often underestimated influence of the single cell—captured by high-throughput single cell analysis.

Using the rich data from the very tools and instruments in this room, we’ve transformed data points back into cells and, informed by their differences, allowed those cells to once again rejoin the world of the viewer in the third dimension.

How do these canvases make you think about the difference of one in your work?

BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Data in New Dimensions. BD Genomics art exhibit at AGBT 2017.

difference of one expression

This piece contrasts two different blood cell states, diseased versus healthy, in such a way that the differences manifest as depth. Cells on the base plane (the closest to the wall) represent healthy control cells, while diseased cells ascend increasingly closer to the viewer based on how different they are from their healthy counterpart.

BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Blood cells: diseased versus healthy control.
BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca

difference of one migration

This piece paints a picture of the diversity of disease, showing how the cells of a tumor and its metastasis vary in expression patterns. These differences are manifested in the piece through each cell’s position in the third dimension. Cells from the primary tumor exist on the base layer (closest to the wall). Cells from the metastatic site project into the room based on the degree of difference from the nearest primary tumor cell in their cluster.

BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Primary tumor versus metastasis.
BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca

difference of one function

This piece explores the expression differences that help determine a healthy cell’s role within an organism. Each cluster corresponds to a different cell type along the renal tubule, with that cluster’s depth mapping to its position along the tubule. Blood enters the tubule through the cells on the base layer (closest to the wall) and is filtered by the cells in the successively ascending layers. The remaining waste exits past the cells in the layer nearest to the viewer.

BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Mouse kidney.
BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
VIEW ALL

news + thoughts

Tree of Emotional Life

Sun 17-02-2019

One moment you're :) and the next you're :-.

Make sense of it all with my Tree of Emotional life—a hierarchical account of how we feel.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A section of the Tree of Emotional Life.

Find and snap to colors in an image

Sat 29-12-2018

One of my color tools, the colorsnap application snaps colors in an image to a set of reference colors and reports their proportion.

Below is Times Square rendered using the colors of the MTA subway lines.


Colors used by the New York MTA subway lines.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Times Square in New York City.
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Times Square in New York City rendered using colors of the MTA subway lines.
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Granger rainbow snapped to subway lines colors from four cities. (zoom)

Take your medicine ... now

Wed 19-12-2018

Drugs could be more effective if taken when the genetic proteins they target are most active.

Design tip: rediscover CMYK primaries.

More of my American Scientific Graphic Science designs

Ruben et al. A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine Science Translational Medicine 10 Issue 458, eaat8806.

Predicting with confidence and tolerance

Wed 07-11-2018
I abhor averages. I like the individual case. —J.D. Brandeis.

We focus on the important distinction between confidence intervals, typically used to express uncertainty of a sampling statistic such as the mean and, prediction and tolerance intervals, used to make statements about the next value to be drawn from the population.

Confidence intervals provide coverage of a single point—the population mean—with the assurance that the probability of non-coverage is some acceptable value (e.g. 0.05). On the other hand, prediction and tolerance intervals both give information about typical values from the population and the percentage of the population expected to be in the interval. For example, a tolerance interval can be configured to tell us what fraction of sampled values (e.g. 95%) will fall into an interval some fraction of the time (e.g. 95%).

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Predicting with confidence and tolerance. (read)

Altman, N. & Krzywinski, M. (2018) Points of significance: Predicting with confidence and tolerance Nature Methods 15:843–844.

Background reading

Krzywinski, M. & Altman, N. (2013) Points of significance: Importance of being uncertain. Nature Methods 10:809–810.

4-day Circos course

Wed 31-10-2018

A 4-day introductory course on genome data parsing and visualization using Circos. Prepared for the Bioinformatics and Genome Analysis course in Institut Pasteur Tunis, Tunis, Tunisia.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Composite of the kinds of images you will learn to make in this course.

Oryza longistaminata genome cake

Mon 24-09-2018

Data visualization should be informative and, where possible, tasty.

Stefan Reuscher from Bioscience and Biotechnology Center at Nagoya University celebrates a publication with a Circos cake.

The cake shows an overview of a de-novo assembled genome of a wild rice species Oryza longistaminata.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Circos cake celebrating Reuscher et al. 2018 publication of the Oryza longistaminata genome.