Martin Krzywinski / Genome Sciences Center / Martin Krzywinski / Genome Sciences Center / - contact me Martin Krzywinski / Genome Sciences Center / on Twitter Martin Krzywinski / Genome Sciences Center / - Lumondo Photography Martin Krzywinski / Genome Sciences Center / - Pi Art Martin Krzywinski / Genome Sciences Center / - Hilbertonians - Creatures on the Hilbert Curve
Thoughts rearrange, familiar now strange.Holly Golightly & The Greenhornes break flowersmore quotes

understanding: more

EMBO Practical Course: Bioinformatics and Genome Analysis, 5–17 June 2017.

data visualization + art

Martin Krzywinski @MKrzywinski
To view the art you'll need a pair of red-blue 3D glasses.
The data will stand out—and you will too.

BD Genomics stereoscopic art exhibit — AGBT 2017

Art is science in love.
— E.F. Weisslitz

BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski
Our art exhibit at AGBT 2017 asked new school questions in old school ways.
BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski

the art of storytelling in science

BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski
Instead of 'explain, not merely show,' seek to 'narrate, not merely explain.' Krzywinski M & Cairo A (2013) Points of View: Storytelling. Nat. Methods 10:687.

Science cannot move forward without storytelling. While we learn about the world and its patterns through science, it is through stories that we can organize and sort through the observations and conclusions that drive the generation of scientific hypotheses.

With Alberto Cairo, I've written about the importance of storytelling as a tool to explain and narrate in Storytelling (2013) Nat. Methods 10:687. There we suggest that instead of "explain, not merely show," you should seek to "narrate, not merely explain."

Our account received support (Should scientists tell stories. (2013) Nat. Methods 10:1037) but not from all (Against storytelling of scientific results. (2013) Nat. Methods 10:1045).

A good science story must present facts and conclusions within a hierarchy—a bag of unsorted observations isn't likely to engage your readers. But while a story must always inform, it should also delight (as much as possible), and inspire. It should make the complexity of the problem accessible—or, at least, approachable—without simplifications that preclude insight into how concepts connect (they always do).

the story of making science stories

Just like science, explaining science is a process—one that can be more vexing than the science itself!

In science one tries to tell people, in such a way as to be understood by everyone, something that no one ever knew before. But in poetry, it’s the exact opposite.
—Paul Dirac, Mathematical Circles Adieu by H. Eves [quoted]

I have previously written about the process of taking a scientific statement (Creating Scientific American Graphic Science graphics) and turning it into a data visualization or, more broadly, visual story.

BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski
December 2015. Composition of bacteria in household dust.
BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski
June 2015. Relationship between genes and traits.
BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski
September 2014. Similarity of human, Denisovan, chimp, bonobo, and gorilla genomes.

The process of the creation of one of these visual stories is itself a story. A story about how the genome is not a blueprint, a discovery of Hilbertonians, which are creatures that live on the Hilbert curve, how algorithms for protein folding can be used to generate art based on the digits of `\pi`, or how we can make human genome art by humans with genomes. I've also written about my design process in creating the cover for Genome Research and the cover of PNAS. As always, not everything works out all the time—read about the EMBO Journal covers that never made it.

BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski
Cover image accompanying our article on mouse vasculature development. Biology turns astrophysical. PNAS 1 May 2012; 109 (18)
BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski
Cover image accompanying Spark: A navigational paradigm for genomic data exploration. Genome Research 22 (11).
BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski
Pi Day 2014 poster | 132 paths with E=-23 of 64 digits of Pi, sorted by aspect ratio.

Here, I'd like to walk you through the process and sketches of creating a story based on the idea of differences in data and how the story can be used to understand the function of cells and disease.

the difference is in the differences

The visual story is a creative collaboration with Becton Dickinson and The Linus Group and its creation began with the concept of differences. The art was on display at AGBT 2017 conference and accompanies BD's launch of the Resolve platform and "Difference of One in Genomics".

Starting with the idea of the "difference of one", our goal was to create artistic representations of data sets generated using the BD Resolve platform, which generates single-cell transcriptomes, that captured a variety of differences that are relevant in genomics research.

The data art pieces were installed in a gallery style, with data visualization and artistic expression in equal parts.

The art itself is an old school take on virtual reality. Unlike modern VR, which isolates the participants from one another, we chose a low-tech route that not only brings the audience closer to the data but also to each other.

data in the art

The data were generated using the BD Resolve single-cell transcriptomics platform. For each of the three art pieces, we identified a data set that captured a variety of differences.

  1. disease onset—how does gene expression in tumor cells differ from normal cells?
  2. disease progression—as a tumor grows and spreads, how does expression change?
  3. background variation—how does gene expression change between normal cells that perform a different function?
BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski

The real surprise and insight is in difference that ultimately advance our thinking (Data visualization: amgibuity as a fellow traveller. (2013) Nat. Methods 10:613-615).

Figuring out which differences are of this kind requires that instead of "What's new?" we ask "What's different?"


news + thoughts

`k` index: a weightlighting and Crossfit performance measure

Wed 07-06-2017

Similar to the `h` index in publishing, the `k` index is a measure of fitness performance.

To achieve a `k` index for a movement you must perform `k` unbroken reps at `k`% 1RM.

The expected value for the `k` index is probably somewhere in the range of `k = 26` to `k=35`, with higher values progressively more difficult to achieve.

In my `k` index introduction article I provide detailed explanation, rep scheme table and WOD example.

Dark Matter of the English Language—the unwords

Wed 07-06-2017

I've applied the char-rnn recurrent neural network to generate new words, names of drugs and countries.

The effect is intriguing and facetious—yes, those are real words.

But these are not: necronology, abobionalism, gabdologist, and nonerify.

These places only exist in the mind: Conchar and Pobacia, Hzuuland, New Kain, Rabibus and Megee Islands, Sentip and Sitina, Sinistan and Urzenia.

And these are the imaginary afflictions of the imagination: ictophobia, myconomascophobia, and talmatomania.

And these, of the body: ophalosis, icabulosis, mediatopathy and bellotalgia.

Want to name your baby? Or someone else's baby? Try Ginavietta Xilly Anganelel or Ferandulde Hommanloco Kictortick.

When taking new therapeutics, never mix salivac and labromine. And don't forget that abadarone is best taken on an empty stomach.

And nothing increases the chance of getting that grant funded than proposing the study of a new –ome! We really need someone to looking into the femome and manome.

Dark Matter of the Genome—the nullomers

Wed 31-05-2017

An exploration of things that are missing in the human genome. The nullomers.

Julia Herold, Stefan Kurtz and Robert Giegerich. Efficient computation of absent words in genomic sequences. BMC Bioinformatics (2008) 9:167


Wed 31-05-2017
Clustering finds patterns in data—whether they are there or not.

We've already seen how data can be grouped into classes in our series on classifiers. In this column, we look at how data can be grouped by similarity in an unsupervised way.

Martin Krzywinski @MKrzywinski
Nature Methods Points of Significance column: Clustering. (read)

We look at two common clustering approaches: `k`-means and hierarchical clustering. All clustering methods share the same approach: they first calculate similarity and then use it to group objects into clusters. The details of the methods, and outputs, vary widely.

Altman, N. & Krzywinski, M. (2017) Points of Significance: Clustering. Nature Methods 14:545–546.

Background reading

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Logistic regression. Nature Methods 13:541-542.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Classifier evaluation. Nature Methods 13:603-604.

...more about the Points of Significance column

What's wrong with pie charts?

Thu 25-05-2017

In this redesign of a pie chart figure from a Nature Medicine article [1], I look at how to organize and present a large number of categories.

I first discuss some of the benefits of a pie chart—there are few and specific—and its shortcomings—there are few but fundamental.

I then walk through the redesign process by showing how the tumor categories can be shown more clearly if they are first aggregated into a small number groups.

(bottom left) Figure 2b from Zehir et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. (2017) Nature Medicine doi:10.1038/nm.4333

Tabular Data

Tue 11-04-2017
Tabulating the number of objects in categories of interest dates back to the earliest records of commerce and population censuses.

After 30 columns, this is our first one without a single figure. Sometimes a table is all you need.

In this column, we discuss nominal categorical data, in which data points are assigned to categories in which there is no implied order. We introduce one-way and two-way tables and the `\chi^2` and Fisher's exact tests.

Altman, N. & Krzywinski, M. (2017) Points of Significance: Tabular data. Nature Methods 14:329–330.

...more about the Points of Significance column