Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
Trance opera—Spente le Stellebe dramaticmore quotes

EMBO Practical Course: Bioinformatics and Genome Analysis, 5–17 June 2017.


data visualization + art

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
To view the art you'll need a pair of red-blue 3D glasses.
The data will stand out—and you will too.

BD Genomics stereoscopic art exhibit — AGBT 2017

Art is science in love.
— E.F. Weisslitz

BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Our art exhibit at AGBT 2017 asked new school questions in old school ways.
BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca

the art of storytelling in science

BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Instead of 'explain, not merely show,' seek to 'narrate, not merely explain.' Krzywinski M & Cairo A (2013) Points of View: Storytelling. Nat. Methods 10:687.

Science cannot move forward without storytelling. While we learn about the world and its patterns through science, it is through stories that we can organize and sort through the observations and conclusions that drive the generation of scientific hypotheses.

With Alberto Cairo, I've written about the importance of storytelling as a tool to explain and narrate in Storytelling (2013) Nat. Methods 10:687. There we suggest that instead of "explain, not merely show," you should seek to "narrate, not merely explain."

Our account received support (Should scientists tell stories. (2013) Nat. Methods 10:1037) but not from all (Against storytelling of scientific results. (2013) Nat. Methods 10:1045).

A good science story must present facts and conclusions within a hierarchy—a bag of unsorted observations isn't likely to engage your readers. But while a story must always inform, it should also delight (as much as possible), and inspire. It should make the complexity of the problem accessible—or, at least, approachable—without simplifications that preclude insight into how concepts connect (they always do).

the story of making science stories

Just like science, explaining science is a process—one that can be more vexing than the science itself!

In science one tries to tell people, in such a way as to be understood by everyone, something that no one ever knew before. But in poetry, it’s the exact opposite.
—Paul Dirac, Mathematical Circles Adieu by H. Eves [quoted]

I have previously written about the process of taking a scientific statement (Creating Scientific American Graphic Science graphics) and turning it into a data visualization or, more broadly, visual story.

BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
December 2015. Composition of bacteria in household dust.
BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
June 2015. Relationship between genes and traits.
BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
September 2014. Similarity of human, Denisovan, chimp, bonobo, and gorilla genomes.

The process of the creation of one of these visual stories is itself a story. A story about how the genome is not a blueprint, a discovery of Hilbertonians, which are creatures that live on the Hilbert curve, how algorithms for protein folding can be used to generate art based on the digits of `\pi`, or how we can make human genome art by humans with genomes. I've also written about my design process in creating the cover for Genome Research and the cover of PNAS. As always, not everything works out all the time—read about the EMBO Journal covers that never made it.

BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Cover image accompanying our article on mouse vasculature development. Biology turns astrophysical. PNAS 1 May 2012; 109 (18)
BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Cover image accompanying Spark: A navigational paradigm for genomic data exploration. Genome Research 22 (11).
BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Pi Day 2014 poster | 132 paths with E=-23 of 64 digits of Pi, sorted by aspect ratio.

Here, I'd like to walk you through the process and sketches of creating a story based on the idea of differences in data and how the story can be used to understand the function of cells and disease.

the difference is in the differences

The visual story is a creative collaboration with Becton Dickinson and The Linus Group and its creation began with the concept of differences. The art was on display at AGBT 2017 conference and accompanies BD's launch of the Resolve platform and "Difference of One in Genomics".

Starting with the idea of the "difference of one", our goal was to create artistic representations of data sets generated using the BD Resolve platform, which generates single-cell transcriptomes, that captured a variety of differences that are relevant in genomics research.

The data art pieces were installed in a gallery style, with data visualization and artistic expression in equal parts.

The art itself is an old school take on virtual reality. Unlike modern VR, which isolates the participants from one another, we chose a low-tech route that not only brings the audience closer to the data but also to each other.

data in the art

The data were generated using the BD Resolve single-cell transcriptomics platform. For each of the three art pieces, we identified a data set that captured a variety of differences.

  1. disease onset—how does gene expression in tumor cells differ from normal cells?
  2. disease progression—as a tumor grows and spreads, how does expression change?
  3. background variation—how does gene expression change between normal cells that perform a different function?
BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca

The real surprise and insight is in difference that ultimately advance our thinking (Data visualization: amgibuity as a fellow traveller. (2013) Nat. Methods 10:613-615).

Figuring out which differences are of this kind requires that instead of "What's new?" we ask "What's different?"

VIEW ALL

news + thoughts

Happy 2017 `\pi` Day—Star Charts, Creatures Once Living and a Poem

Tue 14-03-2017


on a brim of echo,

capsized chamber
drawn into our constellation, and cooling.
—Paolo Marcazzan

Celebrate `\pi` Day (March 14th) with star chart of the digits. The charts draw 40,000 stars generated from the first 12 million digits.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
12,000,000 digits of `\pi` interpreted as a star catalogue. (details)

The 80 constellations are extinct animals and plants. Here you'll find old friends and new stories. Read about how Desmodus is always trying to escape or how Megalodon terrorizes the poor Tecopa! Most constellations have a story.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Find friends and stories among the 80 constellations of extinct animals and plants. Oh look, a Dodo guardings his eggs! (details)

This year I collaborate with Paolo Marcazzan, a Canadian poet, who contributes a poem, Of Black Body, about space and things we might find and lose there.

Check out art from previous years: 2013 `\pi` Day and 2014 `\pi` Day, 2015 `\pi` Day and and 2016 `\pi` Day.

Data in New Dimensions: convergence of art, genomics and bioinformatics

Tue 07-03-2017

Art is science in love.
— E.F. Weisslitz

A behind-the-scenes look at the making of our stereoscopic images which were at display at the AGBT 2017 Conference in February. The art is a creative collaboration with Becton Dickinson and The Linus Group.

Its creation began with the concept of differences and my writeup of the creative and design process focuses on storytelling and how concept of differences is incorporated into the art.

Oh, and this might be a good time to pick up some red-blue 3D glasses.

BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A stereoscopic image and its interpretive panel of single-cell transcriptomes of blood cells: diseased versus healthy control.

Interpreting P values

Thu 02-03-2017
A P value measures a sample’s compatibility with a hypothesis, not the truth of the hypothesis.

This month we continue our discussion about `P` values and focus on the fact that `P` value is a probability statement about the observed sample in the context of a hypothesis, not about the hypothesis being tested.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Interpreting P values. (read)

Given that we are always interested in making inferences about hypotheses, we discuss how `P` values can be used to do this by way of the Benjamin-Berger bound, `\bar{B}` on the Bayes factor, `B`.

Heuristics such as these are valuable in helping to interpret `P` values, though we stress that `P` values vary from sample to sample and hence many sources of evidence need to be examined before drawing scientific conclusions.

Altman, N. & Krzywinski, M. (2017) Points of Significance: Interpreting P values. Nature Methods 14:213–214.

Background reading

Krzywinski, M. & Altman, N. (2017) Points of significance: P values and the search for significance. Nature Methods 14:3–4.

Krzywinski, M. & Altman, N. (2013) Points of significance: Significance, P values and t–tests. Nature Methods 10:1041–1042.

...more about the Points of Significance column

Snellen Charts—Typography to Really Look at

Sat 18-02-2017

Another collection of typographical posters. These ones really ask you to look.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Snellen charts designed using physical constants, Braille and elemental abundances in the universe and human body.

The charts show a variety of interesting symbols and operators found in science and math. The design is in the style of a Snellen chart and typset with the Rockwell font.

Essentials of Data Visualization—8-part video series

Fri 17-02-2017
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca

In collaboration with the Phil Poronnik and Kim Bell-Anderson at the University of Sydney, I'm delighted to share with you our 8-part video series project about thinking about drawing data and communicating science.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Essentials of Data Visualization: Thinking about drawing data and communicating science.

We've created 8 videos, each focusing on a different essential idea in data visualization: encoding, shapes, color, uncertainty, design, drawing missing or unobserved data, labels and process.

The videos were designed as teaching materials. Each video comes with a slide deck and exercises.

P values and the search for significance

Mon 16-01-2017
Little P value
What are you trying to say
Of significance?
—Steve Ziliak

We've written about P values before and warned readers about common misconceptions about them, which are so rife that the American Statistical Association itself has a long statement about them.

This month is our first of a two-part article about P values. Here we look at 'P value hacking' and 'data dredging', which are questionable practices that invalidate the correct interpretation of P values.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: P values and the search for significance. (read)

We also illustrate how P values can lead us astray by asking "What is the smallest P value we can expect if the null hypothesis is true but we have done many tests, either explicitly or implicitly?"

Incidentally, this is our first column in which the standfirst is a haiku.

Altman, N. & Krzywinski, M. (2017) Points of Significance: P values and the search for significance. Nature Methods 14:3–4.

Background reading

Krzywinski, M. & Altman, N. (2013) Points of significance: Significance, P values and t–tests. Nature Methods 10:1041–1042.

...more about the Points of Significance column