Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
Sun is on my face ...a beautiful day without you.Royskoppbe apartmore quotes

understanding: more


In Silico Flurries: Computing a world of snow. Scientific American. 23 December 2017


data visualization + art

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
To view the art you'll need a pair of red-blue 3D glasses.
The data will stand out—and you will too.

BD Genomics stereoscopic art exhibit — AGBT 2017

Art is science in love.
— E.F. Weisslitz

BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Our art exhibit at AGBT 2017 asked new school questions in old school ways.
BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca

the art of storytelling in science

BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Instead of 'explain, not merely show,' seek to 'narrate, not merely explain.' Krzywinski M & Cairo A (2013) Points of View: Storytelling. Nat. Methods 10:687.

Science cannot move forward without storytelling. While we learn about the world and its patterns through science, it is through stories that we can organize and sort through the observations and conclusions that drive the generation of scientific hypotheses.

With Alberto Cairo, I've written about the importance of storytelling as a tool to explain and narrate in Storytelling (2013) Nat. Methods 10:687. There we suggest that instead of "explain, not merely show," you should seek to "narrate, not merely explain."

Our account received support (Should scientists tell stories. (2013) Nat. Methods 10:1037) but not from all (Against storytelling of scientific results. (2013) Nat. Methods 10:1045).

A good science story must present facts and conclusions within a hierarchy—a bag of unsorted observations isn't likely to engage your readers. But while a story must always inform, it should also delight (as much as possible), and inspire. It should make the complexity of the problem accessible—or, at least, approachable—without simplifications that preclude insight into how concepts connect (they always do).

the story of making science stories

Just like science, explaining science is a process—one that can be more vexing than the science itself!

In science one tries to tell people, in such a way as to be understood by everyone, something that no one ever knew before. But in poetry, it’s the exact opposite.
—Paul Dirac, Mathematical Circles Adieu by H. Eves [quoted]

I have previously written about the process of taking a scientific statement (Creating Scientific American Graphic Science graphics) and turning it into a data visualization or, more broadly, visual story.

BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
December 2015. Composition of bacteria in household dust.
BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
June 2015. Relationship between genes and traits.
BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
September 2014. Similarity of human, Denisovan, chimp, bonobo, and gorilla genomes.

The process of the creation of one of these visual stories is itself a story. A story about how the genome is not a blueprint, a discovery of Hilbertonians, which are creatures that live on the Hilbert curve, how algorithms for protein folding can be used to generate art based on the digits of `\pi`, or how we can make human genome art by humans with genomes. I've also written about my design process in creating the cover for Genome Research and the cover of PNAS. As always, not everything works out all the time—read about the EMBO Journal covers that never made it.

BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Cover image accompanying our article on mouse vasculature development. Biology turns astrophysical. PNAS 1 May 2012; 109 (18)
BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Cover image accompanying Spark: A navigational paradigm for genomic data exploration. Genome Research 22 (11).
BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Pi Day 2014 poster | 132 paths with E=-23 of 64 digits of Pi, sorted by aspect ratio.

Here, I'd like to walk you through the process and sketches of creating a story based on the idea of differences in data and how the story can be used to understand the function of cells and disease.

the difference is in the differences

The visual story is a creative collaboration with Becton Dickinson and The Linus Group and its creation began with the concept of differences. The art was on display at AGBT 2017 conference and accompanies BD's launch of the Resolve platform and "Difference of One in Genomics".

Starting with the idea of the "difference of one", our goal was to create artistic representations of data sets generated using the BD Resolve platform, which generates single-cell transcriptomes, that captured a variety of differences that are relevant in genomics research.

The data art pieces were installed in a gallery style, with data visualization and artistic expression in equal parts.

The art itself is an old school take on virtual reality. Unlike modern VR, which isolates the participants from one another, we chose a low-tech route that not only brings the audience closer to the data but also to each other.

data in the art

The data were generated using the BD Resolve single-cell transcriptomics platform. For each of the three art pieces, we identified a data set that captured a variety of differences.

  1. disease onset—how does gene expression in tumor cells differ from normal cells?
  2. disease progression—as a tumor grows and spreads, how does expression change?
  3. background variation—how does gene expression change between normal cells that perform a different function?
BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca

The real surprise and insight is in difference that ultimately advance our thinking (Data visualization: amgibuity as a fellow traveller. (2013) Nat. Methods 10:613-615).

Figuring out which differences are of this kind requires that instead of "What's new?" we ask "What's different?"

VIEW ALL

news + thoughts

Molecular Case Studies Cover

Fri 06-07-2018

The theme of the April issue of Molecular Case Studies is precision oncogenomics. We have three papers in the issue based on work done in our Personalized Oncogenomics Program (POG).

The covers of Molecular Case Studies typically show microscopy images, with some shown in a more abstract fashion. There's also the occasional Circos plot.

I've previously taken a more fine-art approach to cover design, such for those of Nature, Genome Research and Trends in Genetics. I've used microscopy images to create a cover for PNAS—the one that made biology look like astrophysics—and thought that this is kind of material I'd start with for the MCS cover.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Cover design for Apr 2018 issue of Molecular Case Studies. (details)

Happy 2018 `\tau` Day—Art for everyone

Wed 27-06-2018
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
You know what day it is. (details)

Universe Superclusters and Voids

Mon 25-06-2018

A map of the nearby superclusters and voids in the Unvierse.

By "nearby" I mean within 6,000 million light-years.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The Universe — Superclustesr and Voids. The two supergalactic hemispheres showing Abell clusters, superclusters and voids within a distance of 6,000 million light-years from the Milky Way. (details)

Datavis for your feet—the 178.75 lb socks

Sat 23-06-2018

In the past, I've been tangentially involved in fashion design. I've also been more directly involved in fashion photography.

It was now time to design my first ... pair of socks.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Some datavis for your feet: the 178.75 lb socks. (get some)

In collaboration with Flux Socks, the design features the colors and relative thicknesses of Rogue olympic weightlifting plates. The first four plates in the stack are the 55, 45, 35, and 25 competition plates. The top 4 plates are the 10, 5, 2.5 and 1.25 lb change plates.

The perceived weight of each sock is 178.75 lb and 357.5 lb for the pair.

The actual weight is much less.

Genes Behind Psychiatric Disorders

Sun 24-06-2018

Find patterns behind gene expression and disease.

Expression, correlation and network module membership of 11,000+ genes and 5 psychiatric disorders in about 6" x 7" on a single page.

Design tip: Stay calm.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
An analysis of dust reveals how the presence of men, women, dogs and cats affects the variety of bacteria in a household. Appears on Graphic Science page in December 2015 issue of Scientific American.

More of my American Scientific Graphic Science designs

Gandal M.J. et al. Shared Molecular Neuropathology Across Major Psychiatric Disorders Parallels Polygenic Overlap Science 359 693–697 (2018)

Curse(s) of dimensionality

Tue 05-06-2018
There is such a thing as too much of a good thing.

We discuss the many ways in which analysis can be confounded when data has a large number of dimensions (variables). Collectively, these are called the "curses of dimensionality".

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Curse(s) of dimensionality. (read)

Some of these are unintuitive, such as the fact that the volume of the hypersphere increases and then shrinks beyond about 7 dimensions, while the volume of the hypercube always increases. This means that high-dimensional space is "mostly corners" and the distance between points increases greatly with dimension. This has consequences on correlation and classification.

Altman, N. & Krzywinski, M. (2018) Points of significance: Curse(s) of dimensionality Nature Methods 15:399–400.