Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography
Lips that taste of tears, they say, are the best for kissing.Dorothy Parkerget cranky

e: exciting


Circos at British Library Beautiful Science exhibit—Feb 20–May 26


visualization + design

download

numbers.tgz
1,000,000 digits of π, φ, e and ASN.

buy artwork

All the artwork can be purchased from Fine Art America.

buy Martin Krzywinski's work

← art(π,φ,e)

accidental similarity number

The accidental similarity number is a kind of overlap between numbers. I came up with this concept after creating typographical art about the 4ness of π.

To construct this number for π, φ and e we first write the numbers on top of each other and then identify positions for which the numbers have the same digit.

3.1415926535897932 … 21170679821 … 10270193852 … 
1.6180339887498948 … 93911374847 … 08659593958 … 
2.7182818284590452 … 51664274274 … 32862794349 … 

These digits are then used to create the accidental similarity number. In thise case,

0.979 …

By definition, the decimal is held in place.

accidental similarity art

The poster shows the accidental similarity number for π, φ and e created from the first 1,000,000 digits of each number. There are 9,997 positions in which these numbers have the same digit, but only 9,996 are shown because the distance between positions is used to color the digit and I was limited by input files with 1M digits.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
The accidental similarity number for π, φ and e created from the first 1,000,000 digits of each number. (PNG, BUY ARTWORK)

The distribution of distances follows a Poisson distribution with an average of 100, with about 1-1/e values being smaller than 100.

The font is Neutraface Slab Display Medium.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Segments of π, φ and e are connected by thin links if the same digit is shared between two numbers, and thick links if among all three. Shown for the first 10,000 digits. (PNG)

properties of the accidental similarity number

Any properties are accidental, but curiously ASN(π, φ, e) ≈ 1.

If you find other curiously accidental properties, let me know.

data files

Download the first 9,997 digits of the accidental similarity number. This file provides the ASN digit index, the digit and the position from which it is sampled.

other number art

I came up with Accidental Similarity Number immediately after creating this poster of the overlap between π, φ and e.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
The overlap between the three interesting numbers π, φ and e (nixie theme). (PNG, BUY ARTWORK)

This thought stream started with the 4ness of π.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
The 4ness of π — a measure of how similar each 4 is to its neighbours. (read more, BUY ARTWORK)

news + thoughts

Mind your p's and q's

Sat 29-03-2014

In the April Points of Significance Nature Methods column, we continue our and consider what happens when we run a large number of tests.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Comparing Samples — Part II — Multiple Testing. (read)

Observing statistically rare test outcomes is expected if we run enough tests. These are statistically, not biologically, significant. For example, if we run N tests, the smallest P value that we have a 50% chance of observing is 1–exp(–ln2/N). For N = 10k this P value is Pk=10kln2 (e.g. for 104=10,000 tests, P4=6.9×10–5).

We discuss common correction schemes such as Bonferroni, Holm, Benjamini & Hochberg and Storey's q and show how they impact the false positive rate (FPR), false discovery rate (FDR) and power of a batch of tests.

Krzywinski, M. & Altman, N. (2014) Points of Significance: Comparing Samples — Part II — Multiple Testing Nature Methods 11:215-216.

Krzywinski, M. & Altman, N. (2014) Points of Significance: Comparing Samples — Part I — t-tests Nature Methods 11:215-216.

Krzywinski, M. & Altman, N. (2013) Points of Significance: Significance, P values and t-tests Nature Methods 10:1041-1042.

Happy Pi Day— go to planet π

Fri 21-03-2014

Celebrate Pi Day (March 14th) with the art of folding numbers. This year I take the number up to the Feynman Point and apply a protein folding algorithm to render it as a path.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Digits of Pi form landmass and shoreline. (details)

For those of you who liked the minimalist and colorful digit grid, I've expanded on the concept to show stacked ring plots of frequency distributions.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Frequency distribution of digits of Pi in groups of 6 up to the Feynman Point. (details)

And if spirals are your thing...

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Frequency distribution of digits of Pi in groups of 4 up to digit 4,988. (details)

Have data, will compare

Fri 07-03-2014

In the March Points of Significance Nature Methods column, we continue our discussion of t-tests from November (Significance, P values and t-tests).

We look at what happens how uncertainty of two variables combines and how this impacts the increased uncertainty when two samples are compared and highlight the differences between the two-sample and paired t-tests.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Comparing Samples — Part I. (read)

When performing any statistical test, it's important to understand and satisfy its requirements. The t-test is very robust with respect to some of its assumptions, but not others. We explore which.

Krzywinski, M. & Altman, N. (2014) Points of Significance: Comparing Samples — Part I Nature Methods 11:215-216.

Krzywinski, M. & Altman, N. (2013) Points of Significance: Significance, P values and t-tests Nature Methods 10:1041-1042.

Circos at British Library Beautiful Science Exhibit

Thu 06-03-2014

Beautiful Science explores how our understanding of ourselves and our planet has evolved alongside our ability to represent, graph and map the mass data of the time. The exhibit runs 20 February — 26 May 2014 and is free to the public. There is a good Nature blog writeup about it, a piece in The Guardian, and a great video that explains the the exhibit narrated by Johanna Kieniewicz, the curator.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Circos at the British Library Beautiful Science exhibit. (about exhibit)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Mailed invitation to the exhibit features my science art. (zoom)

I am privileged to contribute an information graphic to the exhibit in the Tree of Life section. The piece shows how sequence similarity varies across species as a function of evolutionary distance. The installation is a set of 6 30x30 cm backlit panels. They look terrific.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Circos Circles of Life installation at Beautiful Science exhibit at the British Library. (zoom)