Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
Twenty — minutes — maybe — more.Naomichoose four wordsmore quotes

UCD Computational and Molecular Biology Symposium, Dublin, Ireland. 1-2 Dec 2016.


visualization + design

Typography geek? If you like the geometry and mathematics of these posters, you may enjoy something more letter ed. Visions of type: Type Peep Show: The Private Curves of Letters posters.

The art of Pi (`pi`), Phi (`phi`) and `e`

This section contains various art work based on `\pi`, `\phi` and `e` that I created over the years. `pi` day and `pi` approximation day artwork is kept separate.

The accidental similarity number (ASN) is a kind of overlap between numbers. I came up with this concept after creating typographical art about the `i`-ness of `\pi`.

The poster shows the accidental similarity number for `\pi`, `\phi` and `e`.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
The accidental similarity number for `\pi`, `\phi` and `e` created from the first 1,000,000 digits of each number. (posters, BUY ARTWORK)
VIEW ALL

news + thoughts

Intuitive Design

Thu 03-11-2016

Appeal to intuition when designing with value judgments in mind.

Figure clarity and concision are improved when the selection of shapes and colors is grounded in the Gestalt principles, which describe how we visually perceive and organize information.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
One of the Gestalt principles tells us that the magenta and green shapes will be perceived as as two groups, overriding the fact that the shapes within the group might be different. What the principle does not tell us is how the reader is likely to value each group. (read)

The Gestalt principles are value free. For example, they tell us how we group objects but do not speak to any meaning that we might intuitively infer from visual characteristics.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of View column: Intuitive Design. (read)

This month, we discuss how appealing to such intuitions—related to shapes, colors and spatial orientation— can help us add information to a figure as well as anticipate and encourage useful interpretations.

Krzywinski, M. (2016) Points of View: Intuitive Design. Nature Methods 13:895.

...more about the Points of View column

Regularization

Fri 04-11-2016

Constraining the magnitude of parameters of a model can control its complexity.

This month we continue our discussion about model selection and evaluation and address how to choose a model that avoids both overfitting and underfitting.

Ideally, we want to avoid having either an underfitted model, which is usually a poor fit to the training data, or an overfitted model, which is a good fit to the training data but not to new data.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Regularization (read)

Regularization is a process that penalizes the magnitude of model parameters. This is done by not only minimizing the SSE, `\mathrm{SSE} = \sum_i (y_i - \hat{y}_i)^2 `, as is done normally in a fit, but adding to this minimized quantity the sum of the mode's squared parameters, `\mathrm{SSE} + \lambda \sum_i \hat{\beta}^2_i`.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Regularization. Nature Methods 13:803-804.

Background reading

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Model Selection and Overfitting. Nature Methods 13:703-704.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Classifier evaluation. Nature Methods 13:603-604.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Logistic regression. Nature Methods 13:541-542.

...more about the Points of Significance column

Model Selection and Overfitting

Fri 04-11-2016

With four parameters I can fit an elephant and with five I can make him wiggle his trunk. —John von Neumann.

By increasing the complexity of a model, it is easy to make it fit to data perfectly. Does this mean that the model is perfectly suitable? No.

When a model has a relatively large number of parameters, it is likely to be influenced by the noise in the data, which varies across observations, as much as any underlying trend, which remains the same. Such a model is overfitted—it matches training data well but does not generalize to new observations.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Model Selection and Overfitting (read)

We discuss the use of training, validation and testing data sets and how they can be used, with methods such as cross-validation, to avoid overfitting.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Model Selection and Overfitting. Nature Methods 13:703-704.

Background reading

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Classifier evaluation. Nature Methods 13:603-604.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Logistic regression. Nature Methods 13:541-542.

...more about the Points of Significance column

Classifier Evaluation

Tue 13-09-2016

It is important to understand both what a classification metric expresses and what it hides.

We examine various metrics use to assess the performance of a classifier. We show that a single metric is insufficient to capture performance—for any metric, a variety of scenarios yield the same value.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Classifier Evaluation (read)

We also discuss ROC and AUC curves and how their interpretation changes based on class balance.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Classifier evaluation. Nature Methods 13:603-604.

Background reading

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Logistic regression. Nature Methods 13:541-542.

...more about the Points of Significance column